REBOUND[®] ACL

ORDERING INFORMATION - STANDARD

The Rebound ACL is a dynamic ACL brace that can be integrated directly into current protocols, designed to reduce strain on the anterior cruciate ligament (ACL).

INDICATIONS

Conditions benefiting from an agonistic force that varies throughout flexion in proportion to ACL tension applied to the thigh and calf in the sagittal plane. These may include:

Anterior cruciate ligament (ACL) injury

Reconstruction

Non-surgical treatment.

FEATURES & BENEFITS

Dynamic technology for knee stability, with a Dynamic Tension System[™] that provides an agonistic, dynamic force to the ACL that is flexion-angle dependent (LaPrade et al., 2017).

Specific load adaptation according to the patient's individual anatomy and rehabilitation requirements

Supported by clinical & biomechanical studies, the Rebound ACL is shown to reduce strain on the ACL during activity and significantly reduce strain on the menisicus in ACL-deficient knees (Tomescu et al., 2017).

Biocompatible, hi-tech materials including Blue is You™ patient touch points & ™ liners promote suspension & comfort

Lightweight, aircraft aluminum frame

Available in sizes SM-XL

Flexion & extension range-of-motion lock-outs

Posterior frame optimized for fit and support, with open anterior for ease of donning/doffing

Clinically-tested comfort, validated by end-users and with load mapping data collected during rehabilitation activities, the Rebound[®] Dynamic Tension System (DTS) provides a comfortable load to the posterior thigh & anterior tibia.

SIZE	RIGHT	LEFT	MEASUREMENT A†	MEASUREMENT B ¹
S	B-124501191	B-124601191	8.9 - 10.2 cm	29.2 - 34.3 cm
Μ	B-124501192	B-124601192	10.2 - 11.4 cm	34.3 - 39.4 cm
L	B-124501193	B-124601193	11.4 - 12.7 cm	39.4 - 44.5 cm
XL	B-124501194	B-124601194	12.7 - 14.0 cm	44.5 - 49.5 cm

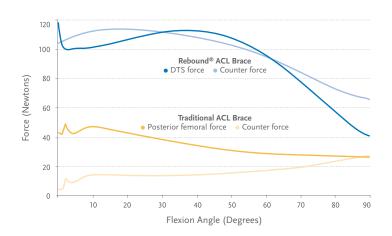
[†] M/L measurement: In a standard, weight bearing position using a Caliper: M/L at joint width or using a Constant Force Caliper: M/L at knee axis line

1 Calf circumference measurement: 15cm below knee center

ORDERING INFORMATION - CUSTOM

DESCRIPTION	RIGHT	LEFT
SmartMeasure App	B-124501154	B-124501155

CUSTOM COLOUR



CC = Charcoal

ACCESSORIES

DESCRIPTION	PART#		
Extension stop kit	B-124702035		
Flexion stop kit	B-124702034		
Condyle pad kit	B-701090009		
Tibia pad	B-124702032		
Tibia hex pad	B-124702033		
Shear knob kit	B-705130051		
Strap kit S-M	B-124702030		
Strap kit L-XL	B-124702031		

AVERAGE ANTERIOR-POSTERIOR FORCE ON THE ACL THOUGHT KNEE FLEXION⁴

The dynamic load of the Rebound ACL on the femur is generated by applying a anterior directed dynamic force on the thigh area, and opposing counter forces on the anterior aspect of the tibia.

Rebound ACL is shown to reduce ACL strain & **SIGNIFICANTLY** reduce meniscus strain²

1. LaPrade RF, Venderley MB, Dahl KD, Dornan GJ. Functional brace in ACL surgery: Force quantification in an in vivo study. Orthopaedic journal of sports medicine 2017; 5(7). doi: 10.1177/2325967117714242.2. 2. During activity. Tomescu, S, Bakker, R, Wasserstein, D. Dynamically tensioned ACL functional knee braces reduce ACL and meniscal strain. Knee Surg, Sports Traumatol Arthrosc 2017; 26: 526–533. Results of a representative end-user survey post brace wear during rehabilitation activities. Data on file at Össur. 4. Clinical Testing / Biomechanical study using force transducers to measure the force between the Rebound ACL and the lower limb, and load mapping data collected during squats. Data on file at Össur.